FwLib_STC8/demo/spi/nrf24l01_audio/main.c
2022-01-28 08:54:50 +08:00

351 lines
10 KiB
C

// Copyright 2021 IOsetting <iosetting(at)outlook.com>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* Example code of wireless audio transer with NRF24L01 module
*
* Pin connection:
* 8H3K32S2/8H1K08 NRF24L01
* P35(SS, Ignored) => CSN 16
* P34(MOSI) => MOSI 15
* P33(MISO) => MISO 14
* P32(SPCLK) => CLK 13
* P36(INT2) => IRQ 17
* P37(IO) => CE 18
*
* TX: STC8H3K32S2 MAX9814
* P11(ADC1) => MIC
* 3.3V => VDD
* 3.3V => GAIN
* GND => A/R
* GND => GND
*
* RX: STC8H1K08 PAM8403
* P10(PWM1P) => 200R => L or R Input
* GND => _|_ Input
* Ext 3.3V/5V => VCC
* Ext GND => GND
*
* Note:
* 1. Use individual power supply for PAM8403
* 2. Switch RX_ADDRESS and TX_ADDRESS in nrf24l01.c for RX and TX
*/
#include "nrf24l01.h"
//#include "voice.h"
#include <stdio.h>
#define BUFF_UNITS 8
#define BUFF_SIZE (BUFF_UNITS * NRF24_PLOAD_WIDTH)
const NRF24_SCEN CURRENT_SCEN = NRF24_SCEN_TX;
extern uint16_t NRF24L01_rxsn;
extern uint8_t *NRF24L01_xbuf_data;
__XDATA uint8_t MAIN_buf[2][BUFF_SIZE] = {{0}};
uint8_t MAIN_buf_index = 0, MAIN_buf_pos = 0,
MAIN_ready_index = 0xFF,
MAIN_txrx_index, MAIN_txrx_pos = 0;
//uint16_t voice_pos = 0, voice_size = 10665;
void ADC_Init(void)
{
// Set ADC1(GPIO P1.1) HIP
GPIO_P1_SetMode(GPIO_Pin_1, GPIO_Mode_Input_HIP);
// Channel: ADC1
ADC_SetChannel(0x01);
// ADC Clock = SYSCLK / 2 / (1+2) = SYSCLK / 6
ADC_SetClockPrescaler(0x02);
// Left alignment, high 8-bit in ADC_RES
ADC_SetResultAlignmentLeft();
// Enable interrupts
EXTI_Global_SetIntState(HAL_State_ON);
EXTI_ADC_SetIntState(HAL_State_ON);
// Turn on ADC power
ADC_SetPowerState(HAL_State_ON);
}
void SPI_Init(void)
{
// MISO(P33) MOSI(P34)
GPIO_P3_SetMode(GPIO_Pin_4, GPIO_Mode_InOut_QBD);
// SCLK(P32) CSN(P35) CE(P37)
GPIO_P3_SetMode(GPIO_Pin_2|GPIO_Pin_5|GPIO_Pin_7, GPIO_Mode_Output_PP);
// IRQ(P36)
GPIO_P3_SetMode(GPIO_Pin_6, GPIO_Mode_Input_HIP);
// ST7567 doesn't work if SPI frequency is too high
SPI_SetClockPrescaler(SPI_ClockPreScaler_16);
// Clock idles low
SPI_SetClockPolarity(HAL_State_OFF);
// Data transfer is driven by lower SS pin
SPI_SetClockPhase(SPI_ClockPhase_LeadingEdge);
// MSB first
SPI_SetDataOrder(SPI_DataOrder_MSB);
// Define the output pins
SPI_SetPort(SPI_AlterPort_P35_P34_P33_P32);
// Ignore SS pin, use MSTR to swith between master/slave mode
SPI_IgnoreSlaveSelect(HAL_State_ON);
// Master mode
SPI_SetMasterMode(HAL_State_ON);
// Start SPI
SPI_SetEnabled(HAL_State_ON);
}
void PWM_Init()
{
// Set GPIO pins output mode P10 -> PWMA.1P
GPIO_P1_SetMode(GPIO_Pin_0, GPIO_Mode_Output_PP);
// Turn off PWMA.1 before change its mode
PWMA_PWM1_SetPortState(HAL_State_OFF);
PWMA_PWM1N_SetPortState(HAL_State_OFF);
// Set PWMA.1 port direction output
PWMA_PWM1_SetPortDirection(PWMB_PortDirOut);
// Set PWMA.1 output low voltage when counter is less than target value
PWMA_PWM1_ConfigOutputMode(PWM_OutputMode_PWM_HighIfLess);
// Enable comparison value preload to make duty cycle changing smooth
PWMA_PWM1_SetComparePreload(HAL_State_ON);
// Turn on PWMA.1
PWMA_PWM1_SetPortState(HAL_State_ON);
// Set PWM frequency to 16kHz, Fpwm = SYSCLK / (PWMx_PSCR + 1) / (PWMx_ARR + 1)
PWMA_SetPrescaler(8);
// PWM width = Period + 1 (side alignment), or AutoReloadPeriod * 2 (center alignment)
PWMA_SetPeriod(0xFF);
// Counter direction, down:from [PWMA_ARRH,PWMA_ARRL] to 0
PWMA_SetCounterDirection(PWM_CounterDirection_Down);
// Enable preload on reload-period
PWMA_SetAutoReloadPreload(HAL_State_ON);
// Enable output on PWMA.1P
PWMA_SetPinOutputState(PWM_Pin_1, HAL_State_ON);
// Set PWMA.1 alternative ports to P1.0 and P1.1
PWMA_PWM1_SetPort(PWMA_PWM1_AlterPort_P10_P11);
// Enable overall output
PWMA_SetOverallState(HAL_State_ON);
// Start counter
PWMA_SetCounterState(HAL_State_ON);
}
void Timer0_Init()
{
TIM_Timer0_Config(HAL_State_ON, TIM_TimerMode_16BitAuto, 8000);
EXTI_Timer0_SetIntState(HAL_State_ON);
EXTI_Timer0_SetIntPriority(EXTI_IntPriority_High);
EXTI_Global_SetIntState(HAL_State_ON);
TIM_Timer0_SetRunState(HAL_State_ON);
}
void INT_Init()
{
EXTI_Int2_SetIntState(HAL_State_ON);
EXTI_Global_SetIntState(HAL_State_ON);
}
INTERRUPT(ADC_Routine, EXTI_VectADC)
{
ADC_ClearInterrupt();
MAIN_buf[MAIN_buf_index][MAIN_buf_pos] = ADC_RES;
if (MAIN_buf_pos == BUFF_SIZE - 1)
{
MAIN_buf_pos = 0;
MAIN_ready_index = MAIN_buf_index;
MAIN_buf_index = 1 - MAIN_buf_index;
}
else
{
MAIN_buf_pos++;
}
}
INTERRUPT(Timer0_Routine, EXTI_VectTimer0)
{
uint8_t dc;
if (CURRENT_SCEN == NRF24_SCEN_TX)
{
ADC_Start();
// MAIN_buf[MAIN_buf_index][MAIN_buf_pos] = voice_bulk[voice_pos++];
// if (MAIN_buf_pos == BUFF_SIZE - 1)
// {
// MAIN_buf_pos = 0;
// MAIN_ready_index = MAIN_buf_index;
// MAIN_buf_index = 1 - MAIN_buf_index;
// }
// else
// {
// MAIN_buf_pos++;
// }
// if (voice_pos == voice_size) voice_pos = 0;
}
else if (CURRENT_SCEN == NRF24_SCEN_RX)
{
if (MAIN_txrx_index == 0xFF)
{
if (MAIN_ready_index != 0xFF)
{
MAIN_txrx_index = MAIN_ready_index;
MAIN_ready_index = 0xFF;
MAIN_txrx_pos = 0;
}
}
if (MAIN_txrx_index != 0xFF)
{
dc = MAIN_buf[MAIN_txrx_index][MAIN_txrx_pos];
PWMA_PWM1_SetCaptureCompareValue(dc);
// UART1_TxHex(dc);
// if (MAIN_txrx_pos % 32 == 0)
// {
// UART1_TxString("\r\n");
// }
if (MAIN_txrx_pos == BUFF_SIZE - 1)
{
MAIN_txrx_index = 0xFF;
if (MAIN_ready_index != 0xFF)
{
MAIN_txrx_index = MAIN_ready_index;
MAIN_ready_index = 0xFF;
MAIN_txrx_pos = 0;
}
}
else
{
MAIN_txrx_pos++;
}
}
}
}
INTERRUPT(Int2_Routine, EXTI_VectInt2)
{
uint8_t pipe_num, status, i, *j;
status = NRF24L01_HandelIrqFlag();
pipe_num = (status >> 1) & 0x07;
if (pipe_num != 0x07)
{
i = NRF24_PLOAD_WIDTH;
j = NRF24L01_xbuf_data;
while (i--)
{
MAIN_buf[MAIN_buf_index][MAIN_buf_pos++] = *j++;
}
//UART1_TxHex(MAIN_buf_pos);
if (MAIN_buf_pos == 0)
{
MAIN_ready_index = MAIN_buf_index;
MAIN_buf_index = 1 - MAIN_buf_index;
}
}
}
void main(void)
{
uint8_t *tmp;
uint8_t pos = 0, succ = 0, err = 0, i;
SYS_SetClock();
// UART1, baud 115200, baud source Timer1, 1T mode, no interrupt
UART1_Config8bitUart(UART1_BaudSource_Timer1, HAL_State_ON, 115200);
UART1_TxString("UART Initialized\r\n");
SPI_Init();
UART1_TxString("SPI Initialized\r\n");
while (NRF24L01_Check() == 1)
{
UART1_TxString("Check failed\r\n");
SYS_Delay(1000);
}
UART1_TxString("NRF24L01 Checked\r\n");
switch (CURRENT_SCEN)
{
case NRF24_SCEN_TX:
ADC_Init();
UART1_TxString("ADC Initialized\r\n");
Timer0_Init();
UART1_TxString("Timer0 Initialized\r\n");
NRF24L01_Init(NRF24_MODE_TX);
UART1_TxString("NRF24L01 Initialized\r\n");
while (1)
{
if (MAIN_ready_index != 0xFF)
{
MAIN_txrx_index = MAIN_ready_index;
MAIN_ready_index = 0xFF;
for (pos = 0; pos < BUFF_UNITS; pos++)
{
tmp = (uint8_t *)MAIN_buf[MAIN_txrx_index] + (pos * NRF24_PLOAD_WIDTH);
// for (i = 0; i < 32; i++)
// {
// UART1_TxHex(*(tmp + i));
// }
// UART1_TxString("\r\n");
if (NRF24L01_WriteFast(tmp) == 0)
{
NRF24L01_ResetTX();
err++;
}
else
{
succ++;
}
if (err >= 255 || succ >= 255)
{
UART1_TxHex(err);
UART1_TxHex(succ);
UART1_TxString("\r\n");
err = 0;
succ = 0;
}
//SYS_Delay(1);
}
}
}
break;
case NRF24_SCEN_RX:
INT_Init();
PWM_Init();
Timer0_Init();
UART1_TxString("Timer0 Initialized\r\n");
NRF24L01_Init(NRF24_MODE_RX);
while (1)
{
UART1_TxHex(NRF24L01_rxsn >> 8);
UART1_TxHex(NRF24L01_rxsn & 0xFF);
UART1_TxString("\r\n");
SYS_Delay(1000);
}
break;
case NRF24_SCEN_HALF_DUPLEX:
NRF24L01_Init(NRF24_MODE_RX);
INT_Init();
while (1)
{
NRF24L01_Tx(tmp);
SYS_Delay(1000);
}
break;
default:
UART1_TxString("Unknown scen\r\n");
break;
}
}