feat: wireless audio demo

This commit is contained in:
IOsetting 2022-01-28 08:54:50 +08:00
parent e9ed4abac5
commit d924c2dc1d
4 changed files with 684 additions and 3 deletions

View File

@ -16,9 +16,8 @@
* Demo: DAC voice output simulation
* Board: STC8H3K32 (types with flash size >= 32KB)
*
* P1.0 -> Speaker + // if speaker impedance is less than 8 ohms,
* wire a 5 ohm resistance between P1.0 and speaker
* GND -> Speaker -
* P1.0 -> 200R -> Speaker +
* GND -> Speaker -
*/
#include "fw_hal.h"
#include "voice.h"

View File

@ -0,0 +1,351 @@
// Copyright 2021 IOsetting <iosetting(at)outlook.com>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* Example code of wireless audio transer with NRF24L01 module
*
* Pin connection:
* 8H3K32S2/8H1K08 NRF24L01
* P35(SS, Ignored) => CSN 16
* P34(MOSI) => MOSI 15
* P33(MISO) => MISO 14
* P32(SPCLK) => CLK 13
* P36(INT2) => IRQ 17
* P37(IO) => CE 18
*
* TX: STC8H3K32S2 MAX9814
* P11(ADC1) => MIC
* 3.3V => VDD
* 3.3V => GAIN
* GND => A/R
* GND => GND
*
* RX: STC8H1K08 PAM8403
* P10(PWM1P) => 200R => L or R Input
* GND => _|_ Input
* Ext 3.3V/5V => VCC
* Ext GND => GND
*
* Note:
* 1. Use individual power supply for PAM8403
* 2. Switch RX_ADDRESS and TX_ADDRESS in nrf24l01.c for RX and TX
*/
#include "nrf24l01.h"
//#include "voice.h"
#include <stdio.h>
#define BUFF_UNITS 8
#define BUFF_SIZE (BUFF_UNITS * NRF24_PLOAD_WIDTH)
const NRF24_SCEN CURRENT_SCEN = NRF24_SCEN_TX;
extern uint16_t NRF24L01_rxsn;
extern uint8_t *NRF24L01_xbuf_data;
__XDATA uint8_t MAIN_buf[2][BUFF_SIZE] = {{0}};
uint8_t MAIN_buf_index = 0, MAIN_buf_pos = 0,
MAIN_ready_index = 0xFF,
MAIN_txrx_index, MAIN_txrx_pos = 0;
//uint16_t voice_pos = 0, voice_size = 10665;
void ADC_Init(void)
{
// Set ADC1(GPIO P1.1) HIP
GPIO_P1_SetMode(GPIO_Pin_1, GPIO_Mode_Input_HIP);
// Channel: ADC1
ADC_SetChannel(0x01);
// ADC Clock = SYSCLK / 2 / (1+2) = SYSCLK / 6
ADC_SetClockPrescaler(0x02);
// Left alignment, high 8-bit in ADC_RES
ADC_SetResultAlignmentLeft();
// Enable interrupts
EXTI_Global_SetIntState(HAL_State_ON);
EXTI_ADC_SetIntState(HAL_State_ON);
// Turn on ADC power
ADC_SetPowerState(HAL_State_ON);
}
void SPI_Init(void)
{
// MISO(P33) MOSI(P34)
GPIO_P3_SetMode(GPIO_Pin_4, GPIO_Mode_InOut_QBD);
// SCLK(P32) CSN(P35) CE(P37)
GPIO_P3_SetMode(GPIO_Pin_2|GPIO_Pin_5|GPIO_Pin_7, GPIO_Mode_Output_PP);
// IRQ(P36)
GPIO_P3_SetMode(GPIO_Pin_6, GPIO_Mode_Input_HIP);
// ST7567 doesn't work if SPI frequency is too high
SPI_SetClockPrescaler(SPI_ClockPreScaler_16);
// Clock idles low
SPI_SetClockPolarity(HAL_State_OFF);
// Data transfer is driven by lower SS pin
SPI_SetClockPhase(SPI_ClockPhase_LeadingEdge);
// MSB first
SPI_SetDataOrder(SPI_DataOrder_MSB);
// Define the output pins
SPI_SetPort(SPI_AlterPort_P35_P34_P33_P32);
// Ignore SS pin, use MSTR to swith between master/slave mode
SPI_IgnoreSlaveSelect(HAL_State_ON);
// Master mode
SPI_SetMasterMode(HAL_State_ON);
// Start SPI
SPI_SetEnabled(HAL_State_ON);
}
void PWM_Init()
{
// Set GPIO pins output mode P10 -> PWMA.1P
GPIO_P1_SetMode(GPIO_Pin_0, GPIO_Mode_Output_PP);
// Turn off PWMA.1 before change its mode
PWMA_PWM1_SetPortState(HAL_State_OFF);
PWMA_PWM1N_SetPortState(HAL_State_OFF);
// Set PWMA.1 port direction output
PWMA_PWM1_SetPortDirection(PWMB_PortDirOut);
// Set PWMA.1 output low voltage when counter is less than target value
PWMA_PWM1_ConfigOutputMode(PWM_OutputMode_PWM_HighIfLess);
// Enable comparison value preload to make duty cycle changing smooth
PWMA_PWM1_SetComparePreload(HAL_State_ON);
// Turn on PWMA.1
PWMA_PWM1_SetPortState(HAL_State_ON);
// Set PWM frequency to 16kHz, Fpwm = SYSCLK / (PWMx_PSCR + 1) / (PWMx_ARR + 1)
PWMA_SetPrescaler(8);
// PWM width = Period + 1 (side alignment), or AutoReloadPeriod * 2 (center alignment)
PWMA_SetPeriod(0xFF);
// Counter direction, down:from [PWMA_ARRH,PWMA_ARRL] to 0
PWMA_SetCounterDirection(PWM_CounterDirection_Down);
// Enable preload on reload-period
PWMA_SetAutoReloadPreload(HAL_State_ON);
// Enable output on PWMA.1P
PWMA_SetPinOutputState(PWM_Pin_1, HAL_State_ON);
// Set PWMA.1 alternative ports to P1.0 and P1.1
PWMA_PWM1_SetPort(PWMA_PWM1_AlterPort_P10_P11);
// Enable overall output
PWMA_SetOverallState(HAL_State_ON);
// Start counter
PWMA_SetCounterState(HAL_State_ON);
}
void Timer0_Init()
{
TIM_Timer0_Config(HAL_State_ON, TIM_TimerMode_16BitAuto, 8000);
EXTI_Timer0_SetIntState(HAL_State_ON);
EXTI_Timer0_SetIntPriority(EXTI_IntPriority_High);
EXTI_Global_SetIntState(HAL_State_ON);
TIM_Timer0_SetRunState(HAL_State_ON);
}
void INT_Init()
{
EXTI_Int2_SetIntState(HAL_State_ON);
EXTI_Global_SetIntState(HAL_State_ON);
}
INTERRUPT(ADC_Routine, EXTI_VectADC)
{
ADC_ClearInterrupt();
MAIN_buf[MAIN_buf_index][MAIN_buf_pos] = ADC_RES;
if (MAIN_buf_pos == BUFF_SIZE - 1)
{
MAIN_buf_pos = 0;
MAIN_ready_index = MAIN_buf_index;
MAIN_buf_index = 1 - MAIN_buf_index;
}
else
{
MAIN_buf_pos++;
}
}
INTERRUPT(Timer0_Routine, EXTI_VectTimer0)
{
uint8_t dc;
if (CURRENT_SCEN == NRF24_SCEN_TX)
{
ADC_Start();
// MAIN_buf[MAIN_buf_index][MAIN_buf_pos] = voice_bulk[voice_pos++];
// if (MAIN_buf_pos == BUFF_SIZE - 1)
// {
// MAIN_buf_pos = 0;
// MAIN_ready_index = MAIN_buf_index;
// MAIN_buf_index = 1 - MAIN_buf_index;
// }
// else
// {
// MAIN_buf_pos++;
// }
// if (voice_pos == voice_size) voice_pos = 0;
}
else if (CURRENT_SCEN == NRF24_SCEN_RX)
{
if (MAIN_txrx_index == 0xFF)
{
if (MAIN_ready_index != 0xFF)
{
MAIN_txrx_index = MAIN_ready_index;
MAIN_ready_index = 0xFF;
MAIN_txrx_pos = 0;
}
}
if (MAIN_txrx_index != 0xFF)
{
dc = MAIN_buf[MAIN_txrx_index][MAIN_txrx_pos];
PWMA_PWM1_SetCaptureCompareValue(dc);
// UART1_TxHex(dc);
// if (MAIN_txrx_pos % 32 == 0)
// {
// UART1_TxString("\r\n");
// }
if (MAIN_txrx_pos == BUFF_SIZE - 1)
{
MAIN_txrx_index = 0xFF;
if (MAIN_ready_index != 0xFF)
{
MAIN_txrx_index = MAIN_ready_index;
MAIN_ready_index = 0xFF;
MAIN_txrx_pos = 0;
}
}
else
{
MAIN_txrx_pos++;
}
}
}
}
INTERRUPT(Int2_Routine, EXTI_VectInt2)
{
uint8_t pipe_num, status, i, *j;
status = NRF24L01_HandelIrqFlag();
pipe_num = (status >> 1) & 0x07;
if (pipe_num != 0x07)
{
i = NRF24_PLOAD_WIDTH;
j = NRF24L01_xbuf_data;
while (i--)
{
MAIN_buf[MAIN_buf_index][MAIN_buf_pos++] = *j++;
}
//UART1_TxHex(MAIN_buf_pos);
if (MAIN_buf_pos == 0)
{
MAIN_ready_index = MAIN_buf_index;
MAIN_buf_index = 1 - MAIN_buf_index;
}
}
}
void main(void)
{
uint8_t *tmp;
uint8_t pos = 0, succ = 0, err = 0, i;
SYS_SetClock();
// UART1, baud 115200, baud source Timer1, 1T mode, no interrupt
UART1_Config8bitUart(UART1_BaudSource_Timer1, HAL_State_ON, 115200);
UART1_TxString("UART Initialized\r\n");
SPI_Init();
UART1_TxString("SPI Initialized\r\n");
while (NRF24L01_Check() == 1)
{
UART1_TxString("Check failed\r\n");
SYS_Delay(1000);
}
UART1_TxString("NRF24L01 Checked\r\n");
switch (CURRENT_SCEN)
{
case NRF24_SCEN_TX:
ADC_Init();
UART1_TxString("ADC Initialized\r\n");
Timer0_Init();
UART1_TxString("Timer0 Initialized\r\n");
NRF24L01_Init(NRF24_MODE_TX);
UART1_TxString("NRF24L01 Initialized\r\n");
while (1)
{
if (MAIN_ready_index != 0xFF)
{
MAIN_txrx_index = MAIN_ready_index;
MAIN_ready_index = 0xFF;
for (pos = 0; pos < BUFF_UNITS; pos++)
{
tmp = (uint8_t *)MAIN_buf[MAIN_txrx_index] + (pos * NRF24_PLOAD_WIDTH);
// for (i = 0; i < 32; i++)
// {
// UART1_TxHex(*(tmp + i));
// }
// UART1_TxString("\r\n");
if (NRF24L01_WriteFast(tmp) == 0)
{
NRF24L01_ResetTX();
err++;
}
else
{
succ++;
}
if (err >= 255 || succ >= 255)
{
UART1_TxHex(err);
UART1_TxHex(succ);
UART1_TxString("\r\n");
err = 0;
succ = 0;
}
//SYS_Delay(1);
}
}
}
break;
case NRF24_SCEN_RX:
INT_Init();
PWM_Init();
Timer0_Init();
UART1_TxString("Timer0 Initialized\r\n");
NRF24L01_Init(NRF24_MODE_RX);
while (1)
{
UART1_TxHex(NRF24L01_rxsn >> 8);
UART1_TxHex(NRF24L01_rxsn & 0xFF);
UART1_TxString("\r\n");
SYS_Delay(1000);
}
break;
case NRF24_SCEN_HALF_DUPLEX:
NRF24L01_Init(NRF24_MODE_RX);
INT_Init();
while (1)
{
NRF24L01_Tx(tmp);
SYS_Delay(1000);
}
break;
default:
UART1_TxString("Unknown scen\r\n");
break;
}
}

View File

@ -0,0 +1,181 @@
// Copyright 2021 IOsetting <iosetting(at)outlook.com>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "nrf24l01.h"
uint8_t __IDATA NRF24L01_xbuf[NRF24_PLOAD_WIDTH + 1];
uint8_t *NRF24L01_xbuf_data = NRF24L01_xbuf + 1;
uint16_t NRF24L01_rxsn = 0;
// T:0x22, R:0x65
const uint8_t RX_ADDRESS[NRF24_ADDR_WIDTH] = {0x32,0x4E,0x6F,0x64,0x22};
const uint8_t TX_ADDRESS[NRF24_ADDR_WIDTH] = {0x32,0x4E,0x6F,0x64,0x65};
void NRF24L01_WriteReg(uint8_t reg, uint8_t value)
{
NRF_CSN = 0;
NRF24L01_xbuf[0] = reg;
NRF24L01_xbuf[1] = value;
SPI_TxRxBytes(NRF24L01_xbuf, 2);
NRF_CSN = 1;
}
uint8_t NRF24L01_ReadReg(uint8_t reg)
{
NRF_CSN = 0;
NRF24L01_xbuf[0] = reg;
NRF24L01_xbuf[1] = NRF24_CMD_NOP;
SPI_TxRxBytes(NRF24L01_xbuf, 2);
NRF_CSN = 1;
return NRF24L01_xbuf[1];
}
void NRF24L01_ReadToBuf(uint8_t reg, uint8_t len)
{
NRF_CSN = 0;
memset(NRF24L01_xbuf, NRF24_CMD_NOP, NRF24_PLOAD_WIDTH + 1);
NRF24L01_xbuf[0] = reg;
SPI_TxRxBytes(NRF24L01_xbuf, len + 1);
NRF_CSN = 1;
}
void NRF24L01_WriteFromBuf(uint8_t reg, const uint8_t *pBuf, uint8_t len)
{
NRF_CSN = 0;
NRF24L01_xbuf[0] = reg;
memcpy(NRF24L01_xbuf_data, pBuf, len);
SPI_TxRxBytes(NRF24L01_xbuf, len + 1);
NRF_CSN = 1;
}
void NRF24L01_PrintBuf(void)
{
uint8_t i;
for (i = 0; i < NRF24_PLOAD_WIDTH + 1; i++)
{
UART1_TxHex(NRF24L01_xbuf[i]);
}
UART1_TxString("\r\n");
}
/**
* Flush the RX FIFO
*/
void NRF24L01_FlushRX(void)
{
NRF24L01_WriteReg(NRF24_CMD_FLUSH_RX, NRF24_CMD_NOP);
}
/**
* Flush the TX FIFO
*/
void NRF24L01_FlushTX(void)
{
NRF24L01_WriteReg(NRF24_CMD_FLUSH_TX, NRF24_CMD_NOP);
}
void NRF24L01_CheckFlag(void)
{
// Read the status & reset the flags
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_STATUS, NRF24_FLAG_RX_DREADY|NRF24_FLAG_TX_DSENT|NRF24_FLAG_MAX_RT);
}
uint8_t NRF24L01_HandelIrqFlag(void)
{
uint8_t status, tx_ds, max_rt, rx_dr, pipe_num;
NRF24L01_CheckFlag();
status = NRF24L01_xbuf[0];
pipe_num = (status >> 1) & 0x07;
if (pipe_num != 0x07)
{
NRF24L01_ReadToBuf(NRF24_CMD_R_RX_PAYLOAD, NRF24_PLOAD_WIDTH);
NRF24L01_rxsn++;
}
return status;
}
void NRF24L01_Tx(uint8_t *pBuf)
{
NRF_CE = 0;
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_CONFIG, 0x0E);
NRF24L01_WriteFromBuf(NRF24_CMD_W_TX_PAYLOAD, pBuf, NRF24_PLOAD_WIDTH);
NRF_CE = 1;
SYS_Delay(10); // for reliable DS state when SETUP_RETR is 0x13
NRF_CE = 0;
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_CONFIG, 0x0F);
NRF_CE = 1;
}
void NRF24L01_StartFastWrite(const void* pBuf)
{
NRF24L01_WriteFromBuf(NRF24_CMD_W_TX_PAYLOAD, pBuf, NRF24_PLOAD_WIDTH);
NRF_CE = 1;
}
uint8_t NRF24L01_WriteFast(const void* pBuf)
{
//Blocking only if FIFO is full. This will loop and block until TX is successful or fail
while ((NRF24L01_ReadReg(NRF24_REG_STATUS) & NRF24_FLAG_TX_FULL)) {
if (NRF24L01_xbuf[0] & NRF24_FLAG_MAX_RT) {
return 0;
}
}
NRF24L01_StartFastWrite(pBuf);
return 1;
}
void NRF24L01_ResetTX(void)
{
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_STATUS, NRF24_FLAG_MAX_RT);//Clear max retry flag
NRF_CE = 0;
NRF_CE = 1;
}
uint8_t NRF24L01_Check(void)
{
uint8_t i;
const uint8_t *ptr = (const uint8_t *)NRF24_TEST_ADDR;
NRF24L01_WriteFromBuf(NRF24_CMD_W_REGISTER | NRF24_REG_TX_ADDR, ptr, NRF24_ADDR_WIDTH);
NRF24L01_ReadToBuf(NRF24_CMD_R_REGISTER | NRF24_REG_TX_ADDR, NRF24_ADDR_WIDTH);
for (i = 0; i < NRF24_ADDR_WIDTH; i++) {
UART1_TxHex(*(NRF24L01_xbuf_data + i));
if (*(NRF24L01_xbuf_data + i) != *ptr++) return 1;
}
return 0;
}
void NRF24L01_Init(NRF24_MODE mode)
{
NRF_CE = 0;
NRF24L01_WriteFromBuf(NRF24_CMD_W_REGISTER + NRF24_REG_TX_ADDR, (uint8_t *)TX_ADDRESS, NRF24_ADDR_WIDTH);
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_RX_PW_P0, NRF24_PLOAD_WIDTH);
NRF24L01_WriteFromBuf(NRF24_CMD_W_REGISTER + NRF24_REG_RX_ADDR_P0, (uint8_t *)TX_ADDRESS, NRF24_ADDR_WIDTH);
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_RX_PW_P1, NRF24_PLOAD_WIDTH);
NRF24L01_WriteFromBuf(NRF24_CMD_W_REGISTER + NRF24_REG_RX_ADDR_P1, (uint8_t *)RX_ADDRESS, NRF24_ADDR_WIDTH);
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_EN_AA, 0x3f);
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_EN_RXADDR, 0x3f);
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_SETUP_RETR, 0x13);
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_RF_CH, 40);
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_RF_SETUP, 0x07);
switch (mode)
{
case NRF24_MODE_TX:
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_CONFIG, 0x0E);
break;
case NRF24_MODE_RX:
default:
NRF24L01_WriteReg(NRF24_CMD_W_REGISTER + NRF24_REG_CONFIG, 0x0F);
break;
}
NRF_CE = 1;
}

View File

@ -0,0 +1,150 @@
// Copyright 2021 IOsetting <iosetting(at)outlook.com>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __FW_RNF24L01_H__
#define __FW_RNF24L01_H__
#include "fw_hal.h"
#include "string.h"
#define NRF_CSN P35
#define NRF_MOSI P34
#define NRF_MISO P33
#define NRF_SCK P32
#define NRF_IRQ P36
#define NRF_CE P37
/********** SPI(nRF24L01) commands ***********/
//
#define NRF24_CMD_R_REGISTER 0x00 // [000A AAAA] Register read
#define NRF24_CMD_W_REGISTER 0x20 // [001A AAAA] Register write
#define NRF24_CMD_R_RX_PAYLOAD 0x61 // Read RX payload
#define NRF24_CMD_W_TX_PAYLOAD 0xA0 // Write TX payload
#define NRF24_CMD_FLUSH_TX 0xE1 // Flush TX FIFO
#define NRF24_CMD_FLUSH_RX 0xE2 // Flush RX FIFO
#define NRF24_CMD_REUSE_TX_PL 0xE3 // Reuse TX payload
#define NRF24_CMD_R_RX_PL_WID 0x60 // Read RX-payload width for the top R_RX_PAYLOAD in the RX FIFO.
#define NRF24_CMD_W_ACK_PAYLOAD 0xA8 // [1010 1PPP] Write ACK Payload to be with ACK packet on PIPE PPP
#define NRF24_CMD_W_TX_PAYLOAD_NOACK 0xB0 //Write TX payload and disable AUTOACK
#define NRF24_CMD_NOP 0xFF // No operation (used for reading status register)
#define NRF24_CMD_ACTIVATE 0x50 // (De)Activates R_RX_PL_WID, W_ACK_PAYLOAD, W_TX_PAYLOAD_NOACK features
#define NRF24_CMD_LOCK_UNLOCK 0x50 // Lock/unlock exclusive features
// SPI(nRF24L01) register address definitions
#define NRF24_REG_CONFIG 0x00 // Configuration register
#define NRF24_REG_EN_AA 0x01 // Enable "Auto acknowledgment"
#define NRF24_REG_EN_RXADDR 0x02 // Enable RX addresses
#define NRF24_REG_SETUP_AW 0x03 // Setup of address widths
#define NRF24_REG_SETUP_RETR 0x04 // Setup of automatic re-transmit
#define NRF24_REG_RF_CH 0x05 // RF channel
#define NRF24_REG_RF_SETUP 0x06 // RF setup
#define NRF24_REG_STATUS 0x07 // Status register
#define NRF24_REG_OBSERVE_TX 0x08 // Transmit observe register
#define NRF24_REG_RPD 0x09 // Received power detector
#define NRF24_REG_RX_ADDR_P0 0x0A // Receive address data pipe 0
#define NRF24_REG_RX_ADDR_P1 0x0B // Receive address data pipe 1
#define NRF24_REG_RX_ADDR_P2 0x0C // Receive address data pipe 2
#define NRF24_REG_RX_ADDR_P3 0x0D // Receive address data pipe 3
#define NRF24_REG_RX_ADDR_P4 0x0E // Receive address data pipe 4
#define NRF24_REG_RX_ADDR_P5 0x0F // Receive address data pipe 5
#define NRF24_REG_TX_ADDR 0x10 // Transmit address
#define NRF24_REG_RX_PW_P0 0x11 // Number of bytes in RX payload in data pipe 0
#define NRF24_REG_RX_PW_P1 0x12 // Number of bytes in RX payload in data pipe 1
#define NRF24_REG_RX_PW_P2 0x13 // Number of bytes in RX payload in data pipe 2
#define NRF24_REG_RX_PW_P3 0x14 // Number of bytes in RX payload in data pipe 3
#define NRF24_REG_RX_PW_P4 0x15 // Number of bytes in RX payload in data pipe 4
#define NRF24_REG_RX_PW_P5 0x16 // Number of bytes in RX payload in data pipe 5
#define NRF24_REG_FIFO_STATUS 0x17 // FIFO status register
#define NRF24_REG_DYNPD 0x1C // Enable dynamic payload length
#define NRF24_REG_FEATURE 0x1D // Feature register
// Register bits definitions
#define NRF24_CONFIG_PRIM_RX 0x01 // PRIM_RX bit in CONFIG register
#define NRF24_CONFIG_PWR_UP 0x02 // PWR_UP bit in CONFIG register
#define NRF24_FEATURE_EN_DYN_ACK 0x01 // EN_DYN_ACK bit in FEATURE register
#define NRF24_FEATURE_EN_ACK_PAY 0x02 // EN_ACK_PAY bit in FEATURE register
#define NRF24_FEATURE_EN_DPL 0x04 // EN_DPL bit in FEATURE register
#define NRF24_FLAG_RX_DREADY 0x40 // RX_DR bit (data ready RX FIFO interrupt)
#define NRF24_FLAG_TX_DSENT 0x20 // TX_DS bit (data sent TX FIFO interrupt)
#define NRF24_FLAG_MAX_RT 0x10 // MAX_RT bit (maximum number of TX re-transmits interrupt)
#define NRF24_FLAG_TX_FULL 0x01 // 1:TX FIFO full
// Register masks definitions
#define NRF24_MASK_REG_MAP 0x1F // Mask bits[4:0] for CMD_RREG and CMD_WREG commands
#define NRF24_MASK_CRC 0x0C // Mask for CRC bits [3:2] in CONFIG register
#define NRF24_MASK_STATUS_IRQ 0x70 // Mask for all IRQ bits in STATUS register
#define NRF24_MASK_RF_PWR 0x06 // Mask RF_PWR[2:1] bits in RF_SETUP register
#define NRF24_MASK_RX_P_NO 0x0E // Mask RX_P_NO[3:1] bits in STATUS register
#define NRF24_MASK_DATARATE 0x28 // Mask RD_DR_[5,3] bits in RF_SETUP register
#define NRF24_MASK_EN_RX 0x3F // Mask ERX_P[5:0] bits in EN_RXADDR register
#define NRF24_MASK_RX_PW 0x3F // Mask [5:0] bits in RX_PW_Px register
#define NRF24_MASK_RETR_ARD 0xF0 // Mask for ARD[7:4] bits in SETUP_RETR register
#define NRF24_MASK_RETR_ARC 0x0F // Mask for ARC[3:0] bits in SETUP_RETR register
#define NRF24_MASK_RXFIFO 0x03 // Mask for RX FIFO status bits [1:0] in FIFO_STATUS register
#define NRF24_MASK_TXFIFO 0x30 // Mask for TX FIFO status bits [5:4] in FIFO_STATUS register
#define NRF24_MASK_PLOS_CNT 0xF0 // Mask for PLOS_CNT[7:4] bits in OBSERVE_TX register
#define NRF24_MASK_ARC_CNT 0x0F // Mask for ARC_CNT[3:0] bits in OBSERVE_TX register
#define NRF24_ADDR_WIDTH 5 // RX/TX address width
#define NRF24_PLOAD_WIDTH 32 // Payload width
#define NRF24_TEST_ADDR "nRF24"
typedef enum
{
NRF24_MODE_RX = 0x00,
NRF24_MODE_TX = 0x01
} NRF24_MODE;
typedef enum
{
NRF24_SCEN_RX = 0x00,
NRF24_SCEN_TX = 0x01,
NRF24_SCEN_HALF_DUPLEX = 0x02
} NRF24_SCEN;
void NRF24L01_WriteReg(uint8_t reg, uint8_t value);
uint8_t NRF24L01_ReadReg(uint8_t reg);
void NRF24L01_ReadToBuf(uint8_t reg, uint8_t len);
void NRF24L01_WriteFromBuf(uint8_t reg, const uint8_t *pBuf, uint8_t len);
void NRF24L01_PrintBuf(void);
/**
* Flush the RX FIFO
*/
void NRF24L01_FlushRX(void);
/**
* Flush the TX FIFO
*/
void NRF24L01_FlushTX(void);
void NRF24L01_CheckFlag(void);
// uint8_t NRF24L01_RxAvailable(uint8_t* pipe_num);
uint8_t NRF24L01_HandelIrqFlag(void);
void NRF24L01_Tx(uint8_t *pBuf);
void NRF24L01_StartFastWrite(const void* pBuf);
uint8_t NRF24L01_WriteFast(const void* pBuf);
void NRF24L01_ResetTX(void);
uint8_t NRF24L01_Check(void);
void NRF24L01_Init(NRF24_MODE mode);
#endif