FwLib_STC8/demo/spi/adxl345/main.c
2022-01-19 02:15:03 +08:00

134 lines
4.1 KiB
C

// Copyright 2021 IOsetting <iosetting(at)outlook.com>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/***
* Demo: ADXL345
* Board: STC8H8K64U
* 8H8K64U
* GND -> GND G
* VDD(Vcc) -> VCC V
* CS -> GPIO OUT P35 34
* INT1 -> GPIO IN P36 INT2 35
* INT2 -> GPIO IN P37 INT3 36
* SDO -> MISO P33 30
* SDI/SDA -> MOSI P34 31
* SCL -> SCLK P32 29
*/
#include "fw_hal.h"
#include "adxl345.h"
#include <stdio.h>
volatile uint8_t count_int2 = 0, count_int3 = 0, count_double_tap = 0;
volatile int16_t x, y, z;
void SPI_Init(void)
{
// ADXL345, SPI CLK max frequency is 5MHz
SPI_SetClockPrescaler(SPI_ClockPreScaler_16);
// Clock is high when idle
SPI_SetClockPolarity(HAL_State_ON);
// Data transfer is driven by lower SS pin
SPI_SetClockPhase(SPI_ClockPhase_TrailingEdge);
// MSB first
SPI_SetDataOrder(SPI_DataOrder_MSB);
// Define the output pins
SPI_SetPort(SPI_AlterPort_P35_P34_P33_P32);
// Ignore SS pin, use MSTR to swith between master/slave mode
SPI_IgnoreSlaveSelect(HAL_State_ON);
// Master mode
SPI_SetMasterMode(HAL_State_ON);
// Start SPI
SPI_SetEnabled(HAL_State_ON);
}
void GPIO_Init(void)
{
// Configure GPIO pins before SPI and device
// MISO(P33), MOSI(P34)
GPIO_P3_SetMode(GPIO_Pin_3|GPIO_Pin_4, GPIO_Mode_InOut_QBD);
// SCLK(P32), CS(P35),
GPIO_P3_SetMode(GPIO_Pin_2|GPIO_Pin_5, GPIO_Mode_Output_PP);
// INT2(P36), INT3(P37)
GPIO_P3_SetMode(GPIO_Pin_6|GPIO_Pin_7, GPIO_Mode_Input_HIP);
}
void INT_Init()
{
EXTI_Int2_SetIntState(HAL_State_ON);
EXTI_Int3_SetIntState(HAL_State_ON);
EXTI_Global_SetIntState(HAL_State_ON);
}
INTERRUPT(Int2_Routine, EXTI_VectInt2)
{
count_int2++;
if (ADXL345_IsInterrupt(ADXL345_INT_DOUBLE_TAP) > 0)
{
count_double_tap++;
}
}
INTERRUPT(Int3_Routine, EXTI_VectInt3)
{
count_int3++;
x = ADXL345_ReadInt(ADXL345_REG_DATAX0);
y = ADXL345_ReadInt(ADXL345_REG_DATAY0);
z = ADXL345_ReadInt(ADXL345_REG_DATAZ0);
}
int main(void)
{
SYS_SetClock();
GPIO_Init();
UART1_Config8bitUart(UART1_BaudSource_Timer1, HAL_State_ON, 115200);
SPI_Init();
INT_Init();
ADXL345_Init(
ADXL345_DATARATE_100_HZ,
ADXL345_SPI_WIRE_4,
ADXL345_INT_ACTIVE_LOW,
ADXL345_DATA_RESOLVE_FULL,
ADXL345_DATA_ALIGNMENT_RIGHT,
ADXL345_G_RANGE_8G
);
// Tap threshold: 62.5mg / LSB, value = 2.5g / 0.0625g = 0x28
ADXL345_WriteByte(ADXL345_REG_THRESH_TAP, 0x28);
// Tap duration: 625us / LSB, value = 0.02s / 0.000625s = 0x20
ADXL345_WriteByte(ADXL345_REG_DUR, 0x20);
// Tap latency: 1.25ms / LSB, value = 0.1s / 0.00125s = 0x50
ADXL345_WriteByte(ADXL345_REG_LATENT, 0x50);
// Tap window: 1.25ms / LSB, value = 0.3s / 0.00125s = 0xF0
ADXL345_WriteByte(ADXL345_REG_WINDOW, 0xF0);
ADXL345_EnableTapDetectOnAxes(
ADXL345_TAP_DETECT_AXIS_X|ADXL345_TAP_DETECT_AXIS_Y|ADXL345_TAP_DETECT_AXIS_Z);
ADXL345_SetInterrupts(
ADXL345_INT_DATA_READY|ADXL345_INT_SINGLE_TAP|ADXL345_INT_DOUBLE_TAP);
ADXL345_RemapInterrupts(ADXL345_INT_DATA_READY);
// read to clear interrupts, or the counter will never receive interrupts
x = ADXL345_ReadInt(ADXL345_REG_DATAX0);
y = ADXL345_ReadInt(ADXL345_REG_DATAY0);
z = ADXL345_ReadInt(ADXL345_REG_DATAZ0);
x = ADXL345_ReadByte(ADXL345_REG_INT_SOURCE);
while(1)
{
printf("X:%6d, Y:%6d, Z:%6d, DAT:%3d, TAP:%3d, 2-TAP:%3d\r\n",
x, y, z, count_int3, count_int2, count_double_tap);
SYS_Delay(50);
}
}