// Copyright 2021 IOsetting // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /*** * Demo: ADXL345 * Board: STC8H8K64U * 8H8K64U * GND -> GND G * VDD(Vcc) -> VCC V * CS -> GPIO OUT P35 34 * INT1 -> GPIO IN P36 INT2 35 * INT2 -> GPIO IN P37 INT3 36 * SDO -> MISO P33 30 * SDI/SDA -> MOSI P34 31 * SCL -> SCLK P32 29 */ #include "fw_hal.h" #include "adxl345.h" #include volatile uint8_t count_int2 = 0, count_int3 = 0, count_double_tap = 0; volatile int16_t x, y, z; void SPI_Init(void) { // ADXL345, SPI CLK max frequency is 5MHz SPI_SetClockPrescaler(SPI_ClockPreScaler_16); // Clock is high when idle SPI_SetClockPolarity(HAL_State_ON); // Data transfer is driven by lower SS pin SPI_SetClockPhase(SPI_ClockPhase_TrailingEdge); // MSB first SPI_SetDataOrder(SPI_DataOrder_MSB); // Define the output pins SPI_SetPort(SPI_AlterPort_P35_P34_P33_P32); // Ignore SS pin, use MSTR to swith between master/slave mode SPI_IgnoreSlaveSelect(HAL_State_ON); // Master mode SPI_SetMasterMode(HAL_State_ON); // Start SPI SPI_SetEnabled(HAL_State_ON); } void GPIO_Init(void) { // Configure GPIO pins before SPI and device // MISO(P33), MOSI(P34) GPIO_P3_SetMode(GPIO_Pin_3|GPIO_Pin_4, GPIO_Mode_InOut_QBD); // SCLK(P32), CS(P35), GPIO_P3_SetMode(GPIO_Pin_2|GPIO_Pin_5, GPIO_Mode_Output_PP); // INT2(P36), INT3(P37) GPIO_P3_SetMode(GPIO_Pin_6|GPIO_Pin_7, GPIO_Mode_Input_HIP); } void INT_Init() { EXTI_Int2_SetIntState(HAL_State_ON); EXTI_Int3_SetIntState(HAL_State_ON); EXTI_Global_SetIntState(HAL_State_ON); } INTERRUPT(Int2_Routine, EXTI_VectInt2) { count_int2++; if (ADXL345_IsInterrupt(ADXL345_INT_DOUBLE_TAP) > 0) { count_double_tap++; } } INTERRUPT(Int3_Routine, EXTI_VectInt3) { count_int3++; x = ADXL345_ReadInt(ADXL345_REG_DATAX0); y = ADXL345_ReadInt(ADXL345_REG_DATAY0); z = ADXL345_ReadInt(ADXL345_REG_DATAZ0); } int main(void) { SYS_SetClock(); GPIO_Init(); UART1_Config8bitUart(UART1_BaudSource_Timer1, HAL_State_ON, 115200); SPI_Init(); INT_Init(); ADXL345_Init( ADXL345_DATARATE_100_HZ, ADXL345_SPI_WIRE_4, ADXL345_INT_ACTIVE_LOW, ADXL345_DATA_RESOLVE_FULL, ADXL345_DATA_ALIGNMENT_RIGHT, ADXL345_G_RANGE_8G ); // Tap threshold: 62.5mg / LSB, value = 2.5g / 0.0625g = 0x28 ADXL345_WriteByte(ADXL345_REG_THRESH_TAP, 0x28); // Tap duration: 625us / LSB, value = 0.02s / 0.000625s = 0x20 ADXL345_WriteByte(ADXL345_REG_DUR, 0x20); // Tap latency: 1.25ms / LSB, value = 0.1s / 0.00125s = 0x50 ADXL345_WriteByte(ADXL345_REG_LATENT, 0x50); // Tap window: 1.25ms / LSB, value = 0.3s / 0.00125s = 0xF0 ADXL345_WriteByte(ADXL345_REG_WINDOW, 0xF0); ADXL345_EnableTapDetectOnAxes( ADXL345_TAP_DETECT_AXIS_X|ADXL345_TAP_DETECT_AXIS_Y|ADXL345_TAP_DETECT_AXIS_Z); ADXL345_SetInterrupts( ADXL345_INT_DATA_READY|ADXL345_INT_SINGLE_TAP|ADXL345_INT_DOUBLE_TAP); ADXL345_RemapInterrupts(ADXL345_INT_DATA_READY); // read to clear interrupts, or the counter will never receive interrupts x = ADXL345_ReadInt(ADXL345_REG_DATAX0); y = ADXL345_ReadInt(ADXL345_REG_DATAY0); z = ADXL345_ReadInt(ADXL345_REG_DATAZ0); x = ADXL345_ReadByte(ADXL345_REG_INT_SOURCE); while(1) { printf("X:%6d, Y:%6d, Z:%6d, DAT:%3d, TAP:%3d, 2-TAP:%3d\r\n", x, y, z, count_int3, count_int2, count_double_tap); SYS_Delay(50); } }